Chapter 2

TMS320C6000 Architectural
Overview

General DSP System Block Diagram

Internal Memory

Internal Buses

External
Memory

Central
Processing

[)
E
R
|
=]
H
E
R
A
L
S

Implementation of Sum of Products (SOP)

So let’s implement the SOP
algorithm!

The implementation in this
module will be done in

N
an* X,
n=1

=a* Xt a* Xyt Ayt Xy
Two basic
erations are requi
for this algorithm.
(1) Multiplication
@
Therefore two basic
instructions are required

Learning Objectives

¢ Describe C6000 CPU architecture.
¢ Introduce some basic instructions.
¢ Describe the C6000 memory map.
¢ Provide an overview of the peripherals.

Implementation of Sum of Products (SOP)

It has been shown in
Chapter 1 that SOP is the
key element for most DSP
algorithms.

So let’s write the code for
this algorithm and at the
same time discover the
C6000 architecture.

N

2 8y * Xy
n=1

= * Xt aF Xyt Ayt Xy
Two basic
operations are required
for this algorithm.
(1) Multiplication
@
Therefore two basic
instructions are required

Multiply (MPY)

N
an* X,
n=1

—a * * *
=ap * Xyt A * Xy . AN Xy

The multiplication of a, by x, is done in
assembly by the following instruction:

MPY al, x1,Y

This instruction is performed by a
multiplier unit that is called “.M”

Multiply (.M unit)

The . M unit performs multiplications in
hardware

MPY M al,x1,Y

Note: 16-bit by 16-bit multiplier provides a 32-bit result.
32-bit by 32-bit multiplier provides a 64-bit result.

Slide 7 noun. Rristol University. (c) Texas Instruments 200

Add (.L unit)

al, x1, prod
Y, prod, Y

RISC processors such as the C6000 use registers to
hold the operands, so lets change this code.

Dr. Nair in. Bristol Universitv. () Texas Instrur

Specifying Register Names

Register File A

A0, A1, A3
A4, A3, A4

The registers A0, A1, A3 and A4 contain the values to be

used by the instructions

Addition (.?)

MPY M al, x1, prod
ADD ? Y, prod, Y

Register File - A

Register File A

MPY M al, x1, prod
ADD L Y, prod, Y

32-bits

Let us correct this by replacing a, x, prod and Y by the
registers as shown above.

Dr. Naim

Specifying Register Names

Register File A

MPY M A0, A1, A3
ADD L A4, A3, A4

Register File A contains 16 registers (A0 -A15) which
are 32-bits wid

Data loading

Register File A Q: How do we load the
operands into the registers?

ristol University. (c) Texas Instruments 2004

Load Unit “.D”

R SEr (ADA It is worth noting at this

stage that the only way to
access memory is through the
.D unit.

32-bits

Data Memory

Dr. Naim Dahnoun. Bristol University. (c) Texas Instruments 2004

Load Instructions (LDB, LDH,LDW,LDDW)

Register File A Q: Which instruction(s) can be
used for loading operands
from the memory to the
registers?

A: The load instructions.

Data Memory

Dr. Naim Dahnoun. Bristol University. (c) Texas Instruments 2004

Load Unit “.D”

Register File A Q: How do we load the
operands into the registers?

A: The operands are loaded
into the registers by loading
them from the memory
using the .D unit.

Data Memory

xas Instruments 2004

Load Instruction

Register File A Q: Which instruction(s) can be
used for loading operands
from the memory to the
registers?

32-bits

Data Memory

Dr. Naim Dahnoun. Bristol University. (c) Texas Instruments 2004

Using the Load Instructions

Before using the load unit you address
have to be aware that this 00000000
processor is byte addressable,

which means that each byte is 00000002
represented by a unique 00000004
address. 00000006

FFFFFFFF

Dr. Naim Dahnoun. Bristol University. (c) Texas Instruments 2004

Using the Load Instructions

The syntax for the load Data
instruction is:

LD *Rn,Rm

Where:

Rn is a register that contains
the address of the operand to
be loaded

and
Rm is the destination register.

in. Bristol Universitv. (

Using the Load Instructions

The syntax for the load
instruction is:

LD *Rn,Rm

The answer, is that it depends on
the instruction you choose:

* LDH: loads half word (16-bit)

+ LDW: loads a word (32-bit) ~
* LDDW: loads a double word (64-bit)
Note: LD on its own does not

exist. e e

16-bits

Y
« LDB: loads one byte (8-bit) —_

Dr. Naim Dahnoun. Bristol Universitv. (i

Using the Load Instructions

The syntax for the load
instruction is:

LD *Rn,Rm

Question:

If data can only be accessed by the
load instruction and the .D unit,
how can we load the register
pointer Rn in the first place?

Dr. Naim Dahnoun. Bristol Universitv. (i

address

00000000
00000002
00000004
00000006
00000008

FFFFFFFF

) Texas Instruments 2004

address

00000000
00000002
00000004
00000006
00000008

FFFFFFFF

) Texas Instruments 2004

address

00000000
00000002
00000004
00000006

FFFFFFFF

) Texas Instruments 2004

Using the Load Instructions

The syntax for the load Data address
instruction is: 00000000

00000002

LD *Rn,Rm
00000004
The question now is how many 00000006

bytes are going to be load 00000008
into the destination register?

FFFFFFFF

in. Rristol University. (c) Texas Instruments 2004

Using the Load Instructions

The syntax for the load 0 address
instruction is: 00000000

00000002

LD *Rn,Rm
00000004
Example: 00000006

S EETTR T 4 then 00000008

if we assume that AS = Ox4 then:
(1) LDB *A5, A7 ; gives A7 = 000000001
(2) LDH *A5,A7; gives A7 = 0x00000201

N /\\
(3) LDW *A5,A7; gives A7 = 0x04030201 ~— 7
(4) LDDW *A5,A7:A6; gives A7:A6 =
0x0807060504030201
X FFFFFFFF

16-bits

Dr. Naim Dahnoun. Bristol University. (c) Texas Instruments 2004

Loading the Pointer Rn

The instruction MVKL will allow a
move of a 16-bit constant into a register
as shown below:

MVKL .? a,A5

(“a”is a constant or label)
How many bits represent a full address?
32 bits

So why does the instruction not allow a
32-bit move?

All instructions are 32-bit wide (see
instruction opcode).

Dr. Naim Dahnoun. Bristol University. (c) Texas Instruments 2004

Loading the Pointer Rn Loading the Pointer Rn

¢ To solve this problem another instruction ¢ Always use MVKL then MVKH, look at
is available: the following examples:

MVKH

Example 1
A5 = 0x87654321

eg. MVKH N7 a, A5
A5 = 0XFFFFFABC (sign extensmn)
¢ Finally, to move the 32-bit address to a

register we can use: Example 2

MVKL | MVKH 0x1234FABC, A5 MVKL 0x1234FABC, A5
A5 = 0x12344321
MVKH)

LDH, MVKL and MVKH Creating a loop

Register File A
ptL, A5 So far we have only
pt, A5 implemented the SOP pt1, A5
pt2, A6 for one tap only, i.e. pt1, A5
(AL pt2, A6
pt2, A6
K —n *
ey Y=a o sk
A0,A1, A3 . *A6, Al
A4, A3, A4 So let’s create a loop : A8
so that we can : A4, A3, A4
implement the SOP
for N Taps.

ptl and pt2 point to some locations

Data Memory in the data memory.

Dr. Nair in. Bristol Universitv. (c) Texas Instruments 20¢

Creating a loop What are the steps for creating a loop

So far we have only
implemented the SOP
for one tap only, i.e.

. Create a label to branch to.

. Add a branch instruction, B.

With the C6000 processors
Veg " there are no dedicated . Create a loop counter.
=, "X |nstructlons such as block

p p . Add an instruction to decrement the loop counter.
usmg the B instruction.

So let’s create a loop . Make the branch conditional based on the value in
so that we can

implement the SOP the loop counter.
for N Taps.

1. Create a label to branch to 2. Add a branch instruction, B.

pt1, A5 pt1, A5
pti, A5 pti, A5

pt2, A6 pt2, A6
pt2, A6 pt2, A6

*A5, A0 . *A5, A0

*A6, Al . *A6, Al

A0, AL, A3 . A0, AL, A3

A4, A3, A4 . A4, A3, A4
loop

Chanter 2. Slide 31 Dr. Naim Dahnoun. Rristol University. (c) Texas Instruments 2004) 2 Dr. Naim Dahnoun. Rristol University. (c) Texas Instruments 2004

Which unit is used by the B ins ion’ Which unit is used by the B instruction?

ptl, A5
pt1, A5 pt1, A5
— pt2, A6 «— pt2, A6

pt2, A6 pt2, A6

Register File A Register File A

*A5, A0 . *A5, A0
*A6, Al 5 *A6, Al
A0, AL, A3 . A0, AL, A3
A4, A3, A4 . A4, A3, A4
loop . loop

32-bits

Data Memory Data Memory

Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004 2 3 Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004

3. Create a loop counter. 4. Decrement the loop counter

pt1, A5 pt1, A5
pt1, A5 pt1, A5
pt2, A6] pt2, A6
pt2, A6 S pt2, A6
count, BO g count, BO

Register File A Register File A

A0, Al, A3 . A0, Al, A3
. A4, A3, A4 . A4, A3, A4
B ’ loop . BO, 1, BO
loop

B registers will be introduced later

Data Memory Data Memory

Chanter 2. Slide 35 Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004 2 Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004

5. Make the branch conditional based on the
value in the loop counter

¢ What is the syntax for making instruction
conditional?

[condition] Instruction Label
e.g.
[B1] B loop

(1) The condition can be one of the following
registers: A1, A2, Bo, B1, B2.

(2) Any instruction can be conditional.

5. Make the branch conditional

ptl, A5
pt1, A5
pt2, A6
pt2, A6
count, BO

Register File A

*A5, A0
*A6, Al
A0, AL, A3
A4, A3, A4
B0, 1, BO
loop

More on the Branch Instruction (2)

€ By specifying a r%%ister as an operand instead of

a label, it is possible to have an absolute branch.
@ This will allow a dynamic range of 2%2.

¢ Case2: B .S2 register
@ Absolute branch.
@ Operates on .S2 ONLY!

Dr. Naim Dahnoun. Bri

5. Make the branch conditional based on the

value in the loop counter

¢ The condition can be inverted by adding the
exclamation symbol “!”* as follows:

[lcondition] Instruction Label

e.g.
['BO] B loop ;branchif BO=0
[BO] B loop ;branchif BO!=0

More on the Branch Instruction (1)

€ With this processor all the instructions are
encoded in a 32-bit.

€ Therefore the label must have a dynamic range
of less than 32-bit as the instruction B has to be
coded.
32-bit
™

“ 21-bit relative address

¢ Casel: B .S1 label
€ Relative branch.
@ Label limited to +/- 220 offset.

Testing the code

ptl, A5
ptl, A5
pt2, A6
pt2, A6
This code performs the following . count, BO
operations:

89X+ 8g*Xg + 8g*Xg + ... +8*Xg At
A0, A1, A3
However, we would like to perform: L A4,A3 A4
"X +a*Xy +a*X, + ... +ay*Xy o B0, 1, BO
loop

Indexing Pointers

Modifying the pointers

Pointer

ptl, AS Modified

ptl, A5
pt2, A6
pt2, A6
count, BO

Description

Pointer

The solution is to modify the pointers *A5. AQ
*A6, Al

A0, A1, A3
A4, A3, A4

B0, 1, B0

A5 and A6. In this case the pointers are used but not modified.

loop

Indexing Pointers

Pointer
Modified
*R Pointer N[o]

*+R[disp] + Pre-offset
*-R[disp] - Pre-offset No

Description

In this case the pointers are modified BEFORE being used

and RESTORED to their previous values.

« [disp] specifies the number of elements size in DW (64-bit), W

(32-bit), H (16-bit), or B (8-bit).
« disp = R or 5-bit constant.
« R can be any register.

2. Slide 45

Indexing Pointers

Pointer

Description Modified

*R Pointer
*+R[disp] + Pre-offset
*-R[disp] - Pre-offset
* disn .
*—-R[disp]
*R++[disp]
*R--[disp]

Pre-decrement
Post-increment
Post-decrement

In this case the pointers are modified AFTER being used
and NOT RESTORED to their Previous Values.

Dr. Naim Dahnoun. Bristol Universitv. () Texa:

nstrument

R can be any register

Indexing Pointers

Description l\lzgzjr#?erd
Pointer
+ Pre-offset
- Pre-offset
Pre-increment

Pre-decrement

*+R[disp]
*-R[disp]
*++R[disp]
*--R[disp]

In this case the pointers are modified BEFORE being used
and NOT RESTORED to their Previous Values.

Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instru

Indexing Pointers

Pointer

Description Modified

*R Pointer
*+R[disp] + Pre-offset
*-R[disp] - Pre-offset

* disn .

*—-R[disp]
*R++[disp]
*R--[disp]

Pre-decrement
Post-increment
Post-decrement
« [disp] specifies # elements - size in DW, W, H, or B.

« disp = R or 5-bit constant.
+ R can be any register.

Modify and testing the code Store the final result

pt1, A5 S2 ptL,A5
pt, A5 S2 ptl, A5

pt2, A6 . pt2, A6
pt2, A6 . pt2, A6
count, BO o count, BO

This code now performs the following . *A5++, AQ This code now performs the following . *A5++, AQ
operations: i *AG++ Al operations: D *A6++ Al
8*Xg Xy Xy + o ayXy A0, A1, A3 8g*Xg + Xy + 3 X, + o+ AKy . A0, AL, A3
A4, A3, A4 . A4, A3, Ad
BO, 1, BO o BO, 1, BO
loop g loop
A4, *A7

Chanter 2. Slide 49 Dr. Naim Dahnoun_ Bristol Universitv. (c) Texas Instruments 2004 Chanter 2. Slide 50 Dr. Naim Dahnoun. Rristol University. (c) Texas Instruments 2004

Store the final result Store the final result

pt1, A5 .82 ptl, A5
pt1, A5 S2 pt1,A5
pt2, A6 S2. pt2, A6
pt2, A6 S2 pt2, A6
count, BO pt3, A7

pt3, A7

*A5++, A0 count, BO

The Pointer A7 has not been initialised. *AG++ AL The Pointer A7 is now initialised.
A0, A1, A3 . *A5++, A0

A4, A3, A4 D *A6H Al

B0, 1, BO M A0,AL A3

loop A4, A3, Al

Al *AT S BO0,1,BO
loop

A4, *AT

Chanter 2. Slide 51 Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004 2 2 Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004

What is the initial value of A4? Increasing the processing powe

pt1, A5 Register File A
pt1, A5
P Ao How can we add
P Ay more processing

pt3, A7
Ad is used as an accumulator, . count, BO

S0 it needs to be reset to zero. . Al
*A5++, AQ

*A6++, Al
A0, AL, A3
A4, A3, A4
BO,1,B0
loop

A4, *A7

Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004 Chanter 2. Slide 54 Dr. Naim Dahnoun. Bristol U v._(c) Texas Instruments 2004

Increasing the processing power!
Register File A
(1) Increase the clock
frequency.

— | ML
. (2) Increase the number
of Processing units.

32-bits

Can the two sides exchange operands in order to increase
performance?

Register File A Register File B

Data Cross Paths
¢ Data cross paths can also be referred to
as register file cross paths.

¢ These cross paths allow operands from
one side to be used by the other side.

— 4 Thereareonlytwocrosspaths:

¢ one path which conveys data from side B
toside A, 1X.

one path which conveys data from side A
to side B, 2X.

To increase the Processing Power, this processor has two
sides (A and B or 1 and 2)

Register File A Register File B

32-bits

The answer is YES but there are limitations.

¢ To exchange operands between the two
sides, some cross paths or links are
required.

What is a cross path?

A cross path links one side of the CPU to
the other.

There are two types of cross paths:
¢ Data cross paths.
¢ Address cross paths.

Dr. Nair

TMS320C67x Data-Path

sret

L1 s

dst
long dst
long src

LD1 32 MSB
ST1

long sre Register
long dst file A
&1 dst (AC-A15)

sret
sro2}
dst

k

M1 sret
srch—'

LD132L8B

Data Cross Paths

¢ Data cross paths only apply to the .L, .S

and .M units.
¢ The data cross paths are very useful,

however there are some limitations in

their use.

Data Cross Path Limitations

ADD .Lix AO0,A1,B2
MPY .Mix AO0,B6,A9
SUB .S1x A8,B2A8
ADD .L1x AO0,B0,A2

Means that the SUB and ADD

belong to the same fetch packet,

therefore execute

simultaneously. o o

Data Cross Paths for both sides

Data Cross Path Limitations

(1) The destination register must be
on same side as unit.

(2) Source registers - up to one cross
path per execute packet per side.

Execute packet: group of instructions that
execute simultaneously.

Data Cross Path Limitations

eg:
ADD .L1x AO0,Al1,B2
MPY .Milx AO0,B6,A9

Address cross paths

(1) The pointer must be on the same
side of the unit.

11

Load or store to either side

Parallel Load/Store using address cross paths

B5
LDW.D1T2 *AO,B5
Il STW.D2T1 A5,*BO

oter 2. Slide 69 Dr. Naim Dahnoun. Bristol Universit

Not Allowed!
Parallel accesses: both cross or neither cross

— B5
LOW.D1T2 *AO,B5| oo
\\ STW D2T2 B6,*B

Chanter 2. Slide 71 Dr. Naim Dah

Standard Parallel Loads

LDW.D1T1 *AO,A5
Il LDW.D2T2 *BO,B5

Fill the blanks ... Does this work?
Datal

DA1=T1

LDW.D1__ *AO,B5
Il STW.D2__ B6,*BO

Dr. Naim Dahnoun. Bristol Universit

Conditions Don’t Use Cross Paths

¢ If a conditional register comes from the
opposite side, it does NOT use a
data or address cross-path.

¢ Examples:

[B2] ADD .L1 A2,A0,A4
[A1] LDW .D2 *BO,B5

12

‘C62x Data-Path Summary

sre|

L1 sl
dst Ref Guide
long dst
long src |

= Full CPU Datapath

ng src| i

long dst Register (Pg 2-2)
file A

dst e
(AD-A15)

Cross Paths - Summary

v~ Data
« Destination register on same side as unit.

+ Source registers - up to one cross path per
execute packet per side.

+ Use “x” to indicate cross-path.
v/ Address
« Pointer must be on same side as unit.

« Data can be transferred to/from either side.
« Parallel accesses: both cross or neither cross.

v/ Conditionals Don’t Use Cross Paths.

Let us have a look at the final details
concerning the functional units.

Consider first the case of the .L and .S
units.

‘C67x Data-Path Summary

sret

L1 s

dst
long dst
iong src

LD1 32 MSB
sT1

long src Register
Jong dst file A
dst (AO-A15)
S g

LD132LSB

Code Review (using side A only)

40, A2 ; A2 = 40, loop count
*A5++, A0 ;A0=a(n)

*A6++, Al ; Al=x(n)

A0,A1,A3 ;A3=a(n)*x(n)
A3,A4, A4 ;Y=Y+A3

A2, 1,A2 ; decrement loop count
loop ;if A2 20, branch

A4, *AT

Note: Assume that A4 was previously cleared and th

Chanter 2. Slide 76 Dr. Nair

Operands - 32/40-bit Register, 5-bit Constant

¢ Operands can be:
« 5-bit constants (or 16-bit for MVKL and MVKH).
+ 32-bit registers.
+ 40-bit Registers.
—e—However,-we-have-seen-that registers-are-only —
32-bit.

So where do the 40-bit registers come from?

13

Operands - 32/40-bit Register, 5-bit Constant

¢ A 40-bit register can be obtained by
concatenating two registers.

¢ However, there are 3 conditions that need
to be respected:

+ The registers must be from the same side.

. ng first register must be even and the second
(]

+ The registers must be consecutive.

Operands - 32/40-bit Register, 5-bit Constant

instr _.unit <src>, <src>, <dst>

Operands - 32/40-bit Register, 5-bit Constant

instr _.unit <src>, <src>, <dst>

OR.L1 A0, Al, A2

Operands - 32/40-bit Register, 5-bit Constant

¢ All combinations of 40-bit registers are
shown below:

40-bit Reg 40-bit Reg

Operands - 32/40-bit Register, 5-bit Constant

instr _.unit <src>, <src>, <dst>

Operands - 32/40-bit Register, 5-bit Constant

instr _.unit <src>, <src>, <dst>

OR.L1 A0, A1, A2
ADD.L2 -5, B3, B4

14

Operands - 32/40-bit Register, 5-bit Constant

instr _unit <src>, <src>, <dst>

, Al, A2
, B3, B4
. A3, A5:A4

Operands - 32/40-bit Register, 5-bit Constant

instr _.unit <src>, <src>, <dst>

A0, Al, A2

-5, B3, B4

A2, A3, A5:A4
A2, A5:A4, A5:A4
3, B9:B8, B9:B8

TMS320C6000 Instruction Set

Operands - 32/40-bit Register, 5-bit Constant

instr _unit <src>, <src>, <dst>

., A2

, B4

., A5:A4
A4, A5:A4

Register to register data transfer

To move the content of a register (A or B)
to another register (B or A) use the move
“MV” Instruction, e.g.:

MV A0, BO
MV B6, B7

To move the content of a control register
to another register (A or B) or vice-versa
use the MV C instruction, e.g.:

MVC IFR, A0
MVC AQ, IRP

'C62x Instruction Set (by category)

Arithmetic Logical Data Mgmt

LDB/H/W
MV

MVC
MVK
MVKL
MVKH
MVKLH
STB/HW

Program Ctrl

B
IDLE
NOP

Note: Refer to the ‘C6000 CPU Reference Guide for more details.

Dr. Naim Dahnoun. Bristol Universit

15

'C62x Instruction Set (by unit)

.L Unit

' C6700: Superset of Fixed-Point (by unit)

.L Unit

Note: Refer to the 'C6000 CPU

Reference Guide for more details.

Chanter 2. Slide 91 Dr. Naim Dahnoun. Rristol University. (c)

Superset of Fixed-Point

Instruction Fetch

Instruction Dispatch

Advanced Instruction
Packing

Control Registers
Emulation

Advanced
Emulation

Registers (A0 - A15) Registers (BO - B15)

Registers (A16 - A31) Registers (B16 - B31)

Dr. Naim Dahnoun. Bristol Universitv. (c)

TMS320C6000 Memory

Chanter 2. Slide 95

Dr. Naim Dahnoun. Bristol University

1043U0D
1dnuisiu]

(c) Texas Instruments 2004

Note: Refer to the 'C

Reference Guide for more details.

Texas Instruments 2004 Dr. Naim Dahnoun. Rristol Universit

. Superset of ‘C62x

Dual/Quad Arith
ABS2
PACKH2 CMPEQ4 ADD2

PACKLH2 CMPGT2 ADD4
PACKHL2 CMPGT4 MAX
UNPKHU4 i MIN
UNPKLU4 SuUB2
SWAP2 suB4
SPACK2 SUBABS4
SPACKU4

Data Com,
PACK2 CMPEQ2

ADDKPC

Load Con: =

Seon ool Shifts

MVK (5-bif o
SSHVL
SSHVR

Texas Instruments 2004 2. Slide 94 Dr. Naim Dahnoun. Bristol University

Memory size per device

64 kB
64 kB

256 kB 52M Bytes
128kB (32:bits wide)

384 kB

64M Bytes
(16-bits wide)

Slide 96

Dr. Naim Dahnoun. Bristol University

(c) Texas Instruments 2004

Data
PACK2
PACKH2
PACKLH2
PACKHL2
PACKH4
PACKL4
UNPKHU4
UNPKLU4

DOTPRSU2
DOTPNRSU2
DOTPU4
DOTPSU4
GMPY4
XPND2/4

(c) Texas Instruments 2004

64M Bytes
¥ e

(c) Texas Instruments 2004

16

Internal Memory Summary

Devices External

C6211 512M

C6711 64 kB -
C6713 (32-hit wide)

(16-bit wide)

1GB (64-bit)
C6415 '
P 256KB (16-bit)

DM642 256 kB 1GB (64-hit)
seens (@25

Devices

C6414

1. Bristol Universitv. (c) Texa

'C6x System Block Diagram ‘C6x Internal Buses

Program Addr
Internal
Memory Program Data
DataAddr -T1

Data Data -T1

A
External D
Memory
External
Interface Data Addr - T2
A Data Data -T2 x32/64
D

. DMA Addr - Read x32
Peripherals

A DMA Data - Read X32
DMA Addr x32 I
D DMA Data - Wi 32

X
can perform 64-bit'data loads.

Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004 lide 100 Dr. Naim Dahnoun.

=]
E
R
byl |
& P
= H
3 E
B R
< A
L
S

Bristol University. (c) Texas Instruments 2004

'C6x System Block Diagram 'C6x System Block Diagram

(STV-0V) sbay
(STV-0V) sbay

.S2
Control Regs

wrr>XOMIv—
wr>XOIMIv—

Control Regs

2. Slide 101 Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004 Chanter 2. Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004

'C6000 Peripherals

ETEN
comm Internal
Memory
GPIO

External

EMIF Internal Buses
Memory

Serial
DMA, EDMA
(Boot)
Timers
Ethernet
Video Ports
VCP/TCP
PLL

V195 Jaisifiay
g 18S Jaisifiay

Chanter 2. Slide 103 r. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 20¢

HPI1/ XBUS / PCI

Parallel
Comm Internal
Memory

External Internal Buses

Memory l
N1 1Mo

Parallel Communication Interfaces

HPI: Dedicated, slave-only, async 16/32-bit bus allows
host-uP access to C6000 memory

XBUS: Similar to HPI but provides ...
+ Master/slave and sync modes
* Glueless i/f to FIFOs (up to single-cycle xfer rate)

PCI: Standard 32-bit, 33MHz/66MHz PCl interface
These interfaces provide means to bootstrap the C6000

2. Slide 105 Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004

McBSP and Utopia
Multi-Channel Buffered Serial Port (McBSP)

+ 2 (or 3) full-duplex, synchronous serial-ports
+ Up to 100 Mb/sec performance
+ Supports multi-channel operation (T1, E1, MVIP, ...)

)

External EMIF Internal Buses

Memory

Serial —

Multi-Channel Audio Serial Port (McASP
+ McBSP features plus more ...

+ Up to 8 stereo lines (16 channels)

+ 1IC support

+ On DM642, C6713

Utopia (C64x)
+ ATM connection
+ 50 MHz wide area network connectivity

Slide 107 Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004

Internal
Memory

]

Internal Buses

SBSRAM

19S Jarsifay
19S Jasibay

External Memory Interface (EMIF)
Glueless access to async/sync memory
Works with PC100/133 SDRAM (cheap, fast, and easy!)
Byte-wide data access
16, 32, or 64-bit bus widths

Chanter 2. Slide 104 >r. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 20¢

Parallel
Comm Internal
Memory
GPIO

External EMIF Internal Buses
Memory

V188 Jaisifiay

General Purpose Input/Output (GPIO)
+ C64x and C6713 provide 8-16 bits of general purpose bit /0O
+ Use to observe or control the signal of a single-pin

Chanter 2. Slide 106 Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004

DMA /EDMA

Parallel
Comm Internal
Memory
GPIO

External EMIF Internal Buses
Memory

Serial

DMA EDMA __|
(Boot) ‘

Direct Memory Access (DMA / EDMA)
+ Transfers any set of memory locations to another
+ 4/16/64 channels (transfer parameter sets)

+ Transfers can be triggered by any interrupt (sync)
+ Operates independent of CPU

+ On reset, provides bootstrap from memory

g18s Jersibay

2. Slide 108 Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004

18

Timer/Counter

ETEN
Comm

GPIO

Ethernet MAC

ETEN
Comm

Internal
Memory
‘ GPIO

Internal
Memory

External

EMIF
Memory

Internal Buses

External
Memory

EMIF Internal Buses

Serial —
DMA, EDMA

(Boot)

Timers —

Serial
DMA, EDMA
(Boot)
Timers
Ethernet

V188 Jalsifioy
g 18S Jaisifiay
V185 Jaisifioy
g 18S Jaisifiay

Timer / Counter

+ Two (or three) 32-bit timer/counters
+ Can generate interrupts

+ Both input and output pins

Ethernet (DM642 only)

+ 10/100 Ethernet MAC

+ Pins are muxed with PCI

+ TCP/IP stack available from TI

Chanter 2. Slide 109 r. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 20¢ r. Naim Dahnoun. Bristol Universitv. (c) Texas Instriuments 20¢

Video Ports

Parallel
Comm

GPIO

External

EMIF
Memory

Internal
Memory

Internal Buses

]

Video Ports (DM642 only)

+ Each configurable for Capture or Display

+ Dual 8/10-bit BT656 or raw modes

+ 16/20-bit raw modes and 20-bit Y/C for high definition

¢ Horz Scaling and Chroma Resampling Support for 8-bit modes
*

Supports transport inter
Video Ports
VCP/TCP
PLL

Parallel
Comm

GPIO

External

EMIF
Memory

Serial
DMA. EDMA
PLL

+ Clock multiplier
+ Reduces EMI and cost
+ Rate is Pin selectable

face mode

Dr. Naim Dahnoun. Bristol Universit

Loop (PLL)

Internal
Memory

|

Internal Buses

Input
| *CLKIN

Output
+ CLKOUT1

(c) Texas Instruments 2004

VCP / TCP -- 3G Wireless

External

Parallel
Comm

Internal

Memory

GPIO

M Turbo Coprocessor (TCP) (C6416 only)
+ Supports 35 data channels at 384 kbps
+ 3GPP /152000 Turho coder
+ Programmable parameters include mode, rate and frame length

Viterbi Coprocessor (VCP) (C6416 only)
+ Supports > 500 voice channels at 8 kbps

¢ Programmable decoder parameters include constraint length,
code rate, and frame length

VCP/TCP —
PLL

Dr. Naim Dahnoun. Bristol Universit

Clock Cycle

What is a clock cycle?
The time between successive instructions

PLL
Rate

C6000

CPU Clock
Frequency

CPU Clock
Cycle Time

+ CLKOUT2

VCP/TCP — (reduced rate clkout)

PLL

Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004

720 MHz
300 MHz
200 MHz
100 MHz

1.39ns

3.33ns
5ns
10 ns

CLKOUT1 (C6000 clock cycle)
CLKOUT2 (%, ¥4, or 1/6 CLKOUT1)

When we talk
out cycles .

MIPs
(max)

Dr. Naim Dahnoun. Bristol Universitv. (c)

19

'C6000 Peripherals Summary ‘C6x Family Part Numbering

ETEN

Comm mggi ¢ Example = TMS320LC6201PKGA200
GPIO + TMS320 =TI DSP
L = Place holder for voltage levels
External
Memory EMIF Internal Buses c6 = Cox family
— 2 = Fixed-point core
DMA, EDMA . 01 = Memory/peripheral configuration
(Boot) PKG = Pkg designator (actual letters TBD)
Timers A =-40 to 85C (blank for 0 to 70C)

Ethernet 200 = Core CPU speed in Mhz
Video Ports
VCP/TCP

PLL

V198 Jaisifay

xas Instruments 200 Chanter 2 or. N 1. Bristol Universitv. (c) Texas Instruments 200

Module 1 Exam 3. Conditional Code
e e mettioned Wl a. Which registers can be used as cond’l registers?
a. How many can perform an ADD? Name them.

b. Which instructions can be conditional?
b. Which support memory loads/stores?
.M S .D L
2. Memory Map

a. How many external ranges exist on ‘C6201? 4. Performance
a. What is the 'C6711 instruction cycle time?

b. How can the 'C6711 execute 1200 MIPs?

Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004 Chanter 2 8 Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004

5. Coding Problems 5. Coding Problems

a. Move contents of A0-->Al a. Move contents of AO-->Al

b. Move contents of CSR-->Al

c. Clear register A5

Dr. Naim Dahnoun. Bristol Universit

xas Instruments 2004 Chanter 2. Slide 124 Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004

20

5. Coding Problems (cont’d) 5. Coding Problems (cont’d)

d.A2 = A0 + Al h. Load A7 with contents of mem1 and post-
increment the selected pointer.

e. If (B1 = 0) then B2 = B5 * B6

f.A2=A0*Al +10

g. Load an unsigned constant (19ABCh) into
register A6.

1. Bristol Universitv. (c) Texas Instruments 200 Chanter 2. Slic or. Naim Br (c) Texas Instruments 20C

Module 1 Exam (solution) 3. Conditional Code

e e mettioned Wl a. Which registers can be used as cond’l registers?

Al, A2, BO, B1, B2
b. Which instructions can be conditional?
All of them

a. How many can perform an ADD? Name them.
,.L2,.D1, .D2, .S1, .S2
b. Which support memory loads/stores?
.M S
2. Memory Map

a. How many external ranges exist on ‘C6201? 4. Performance
Four a. What is the 'C6711 instruction cycle time?
CLKOUT1
b. How can the 'C6711 execute 1200 MIPs?
1200 MIPs = 8 instructions (units) x 150 MHz

Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004 Chanter 2. Slide 12. Dr. Naim Dahnoun. Bristol Universitv. (c) Texas Instruments 2004

5. Coding Problems 5. Coding Problems

a. Move contents of A0-->Al a. Move contents of AO-->Al

MV L1 A0Al MV L1 A0,Al
ADD .S1 A0, 0, Al or ADD .S1 A0, 0, Al

MPY .M1 AO, 1, Al (what's the problem or MPY M1 A0, 1,A1L (A0canonlybea
with this?) 16-bit value)

b. Move contents of CSR-->Al
MVC CSR, AT
c. Clear register A5

ZERO.S1 A5
or SUB .L1 A5,A5 A5
or MPY .M1 A5, 0, A5
or CLR .S1 A5,0,31,A5
or MVK .S1
or XOR L1

Dr. Naim Dahnoun. Bristol Universit

5. Coding Problems (cont’d) 5. Coding Problems (cont’d)

d.A2 = A0 + Al h. Load A7 with contents of mem1 and post-

MPY . M1 AO, AO, A2 increment the selected pointer.
ADD.L1 A2, Al, A2 X16 mem

e. If (B1 = 0) then B2 =B5 *B6

[B1] MPY.M2 B5, B6, B2

f.A2=A0*A1+10
MPY AO, Al, A2 .
ADD 10, A2, A2 load_mem1:

g. Load an unsigned constant (19ABCh) into

register A6. value .equ 0x00019abc
mvkl .s1 0x00019abc,a6

mvkh .s1 0x00019abc,a6 mvkl.s1 value,a6
mvkh.s1l value,a6

in. Bristol Universit

Architecture

¢ Links:
C6711 data sheet:
C6713 data sheet:
C6416 data sheet:
User guide:

Errata: Chapter 2

TMS320C6000 Architectural
Overview

- End -

22

